Tag Archives: evdev

Sane Session-Switching

In a previous article I talked about the history of VT switching. Created as a simple way to switch between text-mode sessions it has grown into a fragile API to protect one testosterone monster (also called XServer) from another. XServers used to poke in PCI bars, modified MMIO registers and messed around with DMA controllers. If they hauled out the big guns, it was almost absurd to believe a simple signal-flinging VT could ever successfully negotiate. Fortunately, today’s XServer is a repentant sinner. With common desktop hardware, all direct I/O is done in the kernel (thanks KMS!) and chances of screwing up your GPUs are rather minimal. This allows us to finally implement proper device-handover during session-switches.

If we look at sessions at a whole, the XServer isn’t special at all. A lot of session-daemons may run today that provide some service to the session as a whole. This includes pulseaudio, dbus, systemd –user, colord, polkit, ssh-keychain, and a lot more. All these daemons don’t need any special synchronization during session-switch. So why does the XServer require it?

Any graphics-server like the XServer is responsible of providing access to input and graphics devices to a session. When a session is activated, they need to re-initialize the devices. Before a session is deactivated, they need to cleanup the devices so the to-be-activated session can access them. The reason they need to do this is missing infrastructure to revoke their access. If a session would not cleanup graphics devices, the kernel would prevent any new session from accessing the graphics device. For input devices it is even worse: If a session doesn’t close the devices during deactivation, it would continue reading input events while the new session is active. So while typing in your password, the background session might send these key-strokes to your IRC client (which is exactly what XMir did). What we need is a kernel feature to forcibly revoke access to a graphics or input device. Unfortunately, it is not as easy at it sounds. We need to find some-one who is privileged and trusted enough to do this. You don’t want your background session to revoke your foreground session’s graphics access, do you? This is were systemd-logind enters the stage.

systemd-logind is already managing sessions on a system. It keeps track on which session is active and sets ACLs in /dev to give the foreground session access to device nodes. To implement device-handover, we extend the existing logind-API by a new function: RequestDevice(deviceNode). A graphics-server can pass a file-system path for a device-node in /dev to systemd-logind, which checks permissions, opens the node and returns a file-descriptor to the caller. But systemd-logind retains a copy of the file-descriptor. This allows logind to disable it as long as the session is inactive. During a session-switch, logind can now disable all devices of the old session, re-enable the devices of the new session and notify both of the session-switch. We now have a clean handover from one session to the other. With this technology in place, we can start looking at real scenarios.

1) Session-management with VTs

Session management using VTs for foreground control and logind for device management

Session management with VTs and logind

Based on the graphs for VT-switching, I drew a new one considering logind. VTs are still used to switch between sessions, but sessions no longer open hardware devices directly. Instead, they ask logind as described above. The big advantage is that VT-switches are no longer fragile. If a VT is active, it can be sure that it has exclusive hardware-access. And if a session is dead-locked, we can force a VT-switch and revoke their device-access. This allows to recover from situations where your XServer hangs without SSH’ing from a remote machine or using SysRq.

2) Session-management without VTs

Session management based solely on logind

Pure logind session management

While sane VT-switching is a nice feature, the biggest win is that we can implement proper multi-session support for seats without VTs. While previously only a single session could run on such seats, with logind device-management, we can now support session-switching on any seat.

Instead of using VTs to notify sessions when they are activated or deactivated, we use the logind-dbus-API. A graphics-server can now request input and graphics devices via the logind RequestDevice API and use it while active. Once a session-switch occurs, logind will disable the device file-descriptors and switch sessions. A dbus signal is sent asynchronously to the old and new session. The old session can stop rendering while inactive to save power.

3) Asynchonous events and backwards-compatibility

One thing changes almost unnoticed when using RequestDevice. An active graphics-server might be almost about to display an image on screen while a session-switch occurs. logind revokes access to graphics devices and sends an asynchronous event that the session is now inactive. However, the graphics-server might not have received this event, yet. Instead, it tries to invoke a system-call to update the screen. But this will fail with EACCES or EPERM as it doesn’t have access to it, anymore. Currently, for most graphics servers this is a fatal error. Instead of handling EACCES and interpreting it as “this device is now paused”, they don’t care for the error code and abort. We could fix all the graphics-servers, but to simplify the transition, we introduced negotiated session-switches.

Whenever logind is asked to perform a session-switch, it first sends PauseDevice signals for every open device to the foreground graphics-server. This must respond with a PauseDeviceComplete call to logind for each device. Once all devices are paused, the session-switch is performed. If the foreground session does not respond in a timely manner, logind will forcibly revoke device access and then perform the session-switch, anyway.

Note that negotiated session-switches are only meant for compatibility. Any graphics-server is highly encouraged to handle EACCES just fine!

All my local tests ran fine so far, but all this is still under development. systemd patches can be found at github (frequently rebased!). Most tests I do rely on an experimental novt library, also available at github (I will push it during next week; this is only for testing!). Feedback is welcome! The RFC can be found on systemd-devel. Now I need a day off..

Happy Switching!